TOWARDS A STANDARDISED METHOD TO ACQUIRE AND STORE LIVER SAMPLES AND GUIDELINES TO IMPROVE QUALITY CONTROL AND EXCHANGE OF RELATIVE EXPRESSION DATA

Frank M. Riemers, Jan Rothuizen, Louis C. Penning

Department of Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine, Utrecht, the Netherlands.

Disclosure: No potential conflict of interest
Citation: EMJ Hepatol. 2013;1:78-84.

ABSTRACT

The current ‘state-of-the-art’ molecular techniques are extremely sensitive and consequently prone to false results. Even more so than in the past, today’s hepatology research depends on high quality samples, especially for the molecular analyses. In all steps, starting with specimen sampling, fixation, storage, molecular processing and finally data calculation, variations in procedures between research laboratories may have a profound effect on the final conclusions. At the end of the day, this is an enormous drawback once data from different research institutes need to be reproduced, compared and/or combined. To improve standardisation, the so-called MIQE guidelines (Minimum Information for Publication of Quantitative Real-Time PCR Experiments) were presented for quantitative PCR (qPCR) studies. Furthermore, around the same time, recommendations were presented regarding human biospecimen collection, storage and processing, the so-called BRISQ-guidelines (Biospecimen Reporting for Improved Study Quality). Finally, the editors of The Journal of Pathology as well as Histopathology required in the December 2012 issue of The Journal of Pathology that researchers needed to follow the BRISQ guidelines in their papers in order to improve the sample quality in biomedical research.

These initiatives hold great promise to improve the comparison and independent reproduction of data acquired in different research centres. Pancreas, gall bladder and liver research will especially benefit from the standardisation protocols since these organ systems are highly vulnerable to post-biopsy autolytic degradation. This comment illustrates that standardisation in molecular liver research is not yet at the point where experiments can be easily replicated, and data can be compared and combined.

Keywords: Quantitative PCR, MIQE-precise, normalisation, reference genes.

INTRODUCTION

Molecular expression studies on biospecimen can gain insight into the etiology of a disease, and may lead to information on therapeutic effects and potentially facilitate biomarker studies. These samples need to be acquired, stored and processed in such a way that laboratory-to-laboratory comparison is possible and independent reproducibility can be achieved. Standardisation of protocols in all three steps mentioned above is a way to come to meaningful comparisons. Cost-effective scientific progress can be achieved by different means, for instance, by combining data and data-comparisons of different research groups. High quality data is crucial in this respect. Space limitations often hamper detailed description of materials and methods, and consequently comparisons between laboratories, not to mention meta-analyses, are often flawed. For biopsies the BRISQ guidelines exist and there are guidelines to standardise quantitative PCR (qPCR) expression studies (MIQE-precise guidelines). The MIQE guidelines are summarised in a checklist format and assist in experimental design, facilitate accurate data analysis, relieve the job of a manuscript reviewer, and make data interpretation easier for the readers of the scientific paper. Altogether they are beneficial in all steps from experimental design and biospecimen sampling.
to acceptance and implementation in the scientific community. This chapter is an initiative to raise awareness of the cost-effective progress molecular liver research can make once data are calculated and presented in such a way that experiments can be easily repeated and data can be combined and compared.

Scientists prefer their biopsies, taken at surgery not under time pressure or other forms of stress, to be fixed specifically for their individual research questions which can be either at tissue, cellular or molecular level. However, these separate research questions require different fixation and storage methods. Such a complexity of tissue handling is clearly prone to the introduction of mistakes, leading to biospecimen of potentially lesser quality for a specific analysis. Although RNA is far less stable than DNA some studies indicate that the RNA integrity is not largely influenced even up to 48 hours on ice.\(^5\)\(^6\) The last study included tonsil and liver samples. In contrast, two studies exemplified the effects of variations in liver tissue sampling on subsequent mRNA expression studies.\(^7\)\(^8\) One study described the influence of the biopsy needle size in rat liver biopsies on the RNA quality in a subsequent micro-array expression study.\(^7\) The second study assessed different sampling techniques, fixation methods, and storage procedures for canine liver tissue to optimise the use of a single liver biopsy for histological and molecular (qPCR) measurements.\(^8\)

Not only can total RNA be subject to degradation (usually measured as a RNA Integrity Number (RIN) based on 18S and 28S) during the sampling, storage and processing, but mRNA (only 2-5% of total RNA, but most often the compound of interest) can also be degraded. One way to correct for mRNA degradation, and other steps in mRNA expression studies is the inclusion of so-called reference genes (previously erroneously called housekeeping genes) to normalise for mRNA input and PCR efficiency. The assumption here is that the expression of reference genes is always constant, irrespective of variations in samples, experimental conditions etc. In fact this assumption has been debated for about one decade now.\(^9\) Obviously data comparison in molecular liver research faces an enormous hurdle if reference gene stability is either not evaluated nor are other parts of the sample and data processing not described in detail. Whether this molecular deficit indeed exists in molecular liver research was not reported previously, and is investigated in this chapter. As it turned out, based on a PubMed search (http://www.ncbi.nlm.nih.gov/), the crucial step in expression studies, viz, evaluation in reference gene stability, was often omitted in molecular liver studies. This book chapter therefore is a clear advocacy to implement MIQE-precise guidelines as soon as possible.

<table>
<thead>
<tr>
<th>Variation</th>
<th>Reference gene used</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Colorectal liver metastases</td>
<td>18S rRNA</td>
<td>21</td>
</tr>
<tr>
<td>HCC and HCA</td>
<td>18S rRNA</td>
<td>23</td>
</tr>
<tr>
<td>HCC</td>
<td>18S rRNA</td>
<td>25</td>
</tr>
<tr>
<td>Hepatocellular adenoma</td>
<td>18S rRNA</td>
<td>30</td>
</tr>
<tr>
<td>HepG2 cell line</td>
<td>18S rRNA</td>
<td>31</td>
</tr>
<tr>
<td>Nonalcoholic fatty liver disease</td>
<td>18S rRNA</td>
<td>32</td>
</tr>
<tr>
<td>Hepatocellular adenoma</td>
<td>18S rRNA</td>
<td>39</td>
</tr>
<tr>
<td>Gallstone disease</td>
<td>18S rRNA</td>
<td>41</td>
</tr>
<tr>
<td>HCC progression in mice</td>
<td>18S rRNA</td>
<td>25</td>
</tr>
<tr>
<td>Fibrogenesis in ABCb4 /- mice</td>
<td>18S rRNA</td>
<td>45</td>
</tr>
<tr>
<td>PHX in ob/ob mice</td>
<td>18S rRNA</td>
<td>58</td>
</tr>
<tr>
<td>BDL-induced fibrosis</td>
<td>Beta-2-Microglobulin</td>
<td>46</td>
</tr>
<tr>
<td>BDL- or TAA-induced fibrosis</td>
<td>Beta-2-Microglobulin</td>
<td>50</td>
</tr>
<tr>
<td>HCC patients</td>
<td>Beta-Actin</td>
<td>17</td>
</tr>
<tr>
<td>HBV-related HCC</td>
<td>Beta-Actin</td>
<td>18</td>
</tr>
<tr>
<td>HCC</td>
<td>Beta-Actin</td>
<td>19</td>
</tr>
<tr>
<td>HEV</td>
<td>Beta-Actin</td>
<td>28</td>
</tr>
<tr>
<td>HBV-related HCC</td>
<td>Beta-Actin</td>
<td>29</td>
</tr>
<tr>
<td>Freshly isolated hepatocytes</td>
<td>Beta-Actin</td>
<td>34</td>
</tr>
<tr>
<td>HCC</td>
<td>Beta-Actin</td>
<td>35</td>
</tr>
<tr>
<td>Hepatoma cell line</td>
<td>Beta-Actin</td>
<td>42</td>
</tr>
<tr>
<td>HBx-transgenic mice</td>
<td>Beta-Actin</td>
<td>18</td>
</tr>
<tr>
<td>Lipid accumulation in mice</td>
<td>Beta-Actin</td>
<td>49</td>
</tr>
<tr>
<td>Hepatosteatosis in mice</td>
<td>Beta-Actin</td>
<td>55</td>
</tr>
<tr>
<td>Iron-dextran overload</td>
<td>Beta-Actin</td>
<td>56</td>
</tr>
<tr>
<td>HCC and cell lines</td>
<td>Beta-Actin (HCC) GAPDH(cellline)</td>
<td>10</td>
</tr>
<tr>
<td>HCC</td>
<td>Beta-Globulin</td>
<td>40</td>
</tr>
<tr>
<td>Rosiglitazone and LPS treatment</td>
<td>cyclophilin</td>
<td>52</td>
</tr>
<tr>
<td>LPS injections</td>
<td>cyclophilin</td>
<td>53</td>
</tr>
<tr>
<td>Rats</td>
<td>Cyclophilin A</td>
<td>47</td>
</tr>
<tr>
<td>Primary malignant liver tumor</td>
<td>GAPDH</td>
<td>33</td>
</tr>
<tr>
<td>NASH</td>
<td>GAPDH</td>
<td>36</td>
</tr>
<tr>
<td>HCC</td>
<td>GAPDH</td>
<td>37</td>
</tr>
<tr>
<td>HCC</td>
<td>GAPDH</td>
<td>38</td>
</tr>
<tr>
<td>Mouse model for NAFLD</td>
<td>GAPDH</td>
<td>43</td>
</tr>
<tr>
<td>DEN-treated cyclid +/- mice</td>
<td>GAPDH</td>
<td>44</td>
</tr>
<tr>
<td>Lithogenic diet</td>
<td>GAPDH</td>
<td>51</td>
</tr>
<tr>
<td>Doxorubicin mdr trangenicemic mice</td>
<td>GAPDH</td>
<td>57</td>
</tr>
<tr>
<td>Alcohol liver disease</td>
<td>HPRT</td>
<td>26</td>
</tr>
<tr>
<td>HepG2 cell line</td>
<td>POLR2A</td>
<td>22</td>
</tr>
<tr>
<td>HCV + HIV</td>
<td>RPL0</td>
<td>27</td>
</tr>
<tr>
<td>HCV-induced dysplasia and HCC</td>
<td>RPL41 and SFRS4</td>
<td>11</td>
</tr>
<tr>
<td>CBS +/-, CBS +/-, CBS +/-, mice</td>
<td>SOD-1</td>
<td>54</td>
</tr>
<tr>
<td>Mouse primary hepatocytes</td>
<td>TBP</td>
<td>22</td>
</tr>
<tr>
<td>Biliary atresia</td>
<td>Unspecified “housekeeping gene”</td>
<td>24</td>
</tr>
<tr>
<td>C57Bl6 mice</td>
<td>Unspecified commercial</td>
<td>48</td>
</tr>
<tr>
<td>Primary biliary cirrhosis</td>
<td>Villin</td>
<td>20</td>
</tr>
</tbody>
</table>

Table 1. Papers reporting on quantitative PCR in human and murine liver samples and cell lines, with emphasis on the reference gene included to normalise expression data.
MATERIAL AND METHODS

A PubMed search was performed via http://www.ncbi.nlm.nih.gov/ on Tuesday March 19th 11am CET on the terms ‘human AND quantitative PCR AND expression AND hepatology’. The search was limited to Hepatology and the Journal of Hepatology only, the two highest top-ranked journals in the ISI-field of ‘Gastroenterology and Hepatology’ specifically for hepatology. Moreover both are official journals of the American Association for the Study of Liver Diseases (AASLD) and the European Association for the Study of the Liver (EASL) respectively. A similar search was performed on ‘(murine OR mouse) AND quantitative PCR AND expression AND hepatology’.

Finally, a PubMed search on papers evaluating reference expression stability in liver samples from human and other mammalian species was performed to reveal which reference genes were evaluated under what kind of research samples, and which freeware was used to indicate expression stability and consequently which were most reliable reference gene under that specific condition.

RESULTS

Approximately the first 50 hits on the combined terms ‘human AND quantitative PCR AND expression AND hepatology’ and ‘(murine OR mouse) AND quantitative PCR AND expression AND hepatology’ were screened to establish which presumed stable reference gene was used (Table 1). The preference for the classical reference genes, viz, beta-Actin, GAPDH or 18S rRNA, was obvious. Thirteen times was normalised against beta-actin, eleven times with 18S rRNA, and nine times with GAPDH. In one paper for the clinical samples normalisation was performed with beta-actin, whereas in cell lines GAPDH was used. None of these papers provided information on whether or not the indicated reference gene was expressed at a stable level. Most surprising was the observation that in all papers analysed, except for one, only one reference gene was used for normalisation. The exception included two independent reference genes: SFRS4 and RPL41. Even worse, in view of data comparison, was the number of other reference genes used, including beta-2-microglobulin, beta-globin, cyclophilin A, villin, POLR2A, RPLP0, SOD-1, cyclophilin, TBP, or HPRT. There were no calculations on the expression stability of the reference genes included in any of the papers summarised in Table 1.

Six papers described the evaluation of reference gene expression stability in human samples as depicted in Table 2, GAPDH, beta-actin and HPRT, were included in five out of six studies, TBP was used three times, SFRS4, GUSB, 18S rRNA and B2M were included twice. RPL13A, HMBS, SDHA, RPL41, CYCC, RPS0, UBC, PMM1 and POLR2L were evaluated once. GeNorm analysis and Normfinder were used to evaluate expression levels and depending on the paper, either GUSB (twice), HPRT (twice) or TBP (twice) performed the best, exhibiting the highest stability of expression. SFRS4, HMBS, RPL41 and PMM1 turned out to be the best only once. The three most frequently used reference genes (beta-Actin, 18S rRNA or GAPDH) never ranked as most stably expressed reference genes (Table 2). The GeNorm algorithm allows us to calculate the set of reference genes minimally required to normalise the expression of genes of interest. This analysis (‘pairwise variation’) has been included in as little as two of the six papers described above. Romanowski et al. concluded that two reference genes, viz GUSB and PMM1, were sufficient to obtain a pairwise variation below 0.15, the recommended threshold to calculate the number

<table>
<thead>
<tr>
<th>Variation</th>
<th>Reference genes</th>
<th>Software</th>
<th>Best reference gene(s)</th>
<th>Pairwise variation</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>HCV patients</td>
<td>18S rRNA, Beta-Actin, GAPDH, GUSB, HPRT, SFRS4</td>
<td>G, N, B</td>
<td>SFRS4 GUSB</td>
<td>Not tested</td>
<td>16</td>
</tr>
<tr>
<td>HBV-induced HCC</td>
<td>18S rRNA, Beta-Actin, GAPDH, HPRT, RPL13A, TBP</td>
<td>G, N</td>
<td>TBP HPRT</td>
<td>Not tested</td>
<td>59</td>
</tr>
<tr>
<td>HCC patients</td>
<td>B2M, GAPDH, HMBS, HPRT, SDHA, UBC</td>
<td>G, N</td>
<td>HMBS</td>
<td>Paired samples: V3/V4<0.15</td>
<td>15</td>
</tr>
<tr>
<td>HBV-induced HCC</td>
<td>B2M, Beta-Actin, GAPDH, HPRT, TBP</td>
<td>G, N</td>
<td>HPRT TBP</td>
<td>Not tested</td>
<td>60</td>
</tr>
<tr>
<td>HCV-induced HCC</td>
<td>Beta-Actin, GAPDH, RPL41, RPS20, SFRS4, TBP</td>
<td>G, N</td>
<td>RPL41 SFRS4</td>
<td>Not tested</td>
<td>61</td>
</tr>
<tr>
<td>HCV and HBV patients</td>
<td>Beta-Actin, CycC, GUSB, HPRT, PMM1, POLR2L</td>
<td>G, N</td>
<td>GUSB PMM1</td>
<td>V2/V3<0.15</td>
<td>14</td>
</tr>
</tbody>
</table>

Table 2. Papers reporting on the evaluation of expression stability of potential reference genes in human liver samples. Abbreviations in the software column: G=GeNorm, N=NormFinder, B=Bestkeeper.
Variation	Reference genes used	Software	Best reference gene(s)	Reference
Steatotic mice | B2M, Beta-Actin, GAPDH, HMBS, HPRT, RPL13A, RPLPO, TBP, TFRC, TuBP | G, N, B | HPRT, GAPDH | 62 |
Bos Taurus, cattle | Beta-Actin, GAPDH, HPRT, SDHA, TBP, YWHAZ | G | TBP, Beta-Actin | 63 |
Specific liver cells after Phx in rats | 18S rRNA, B2M, Beta-Actin, GAPDH, HK1, UBC | G | Cell type dependent | 64 |
90% Phx in rats | Alb, GAPDH, HPRT, UBC, YWHAZ | | HPRT | 65 |
Sus scrofa, pig | B2M, Beta-Actin, GAPDH, HPRT, HTPAP, RPL13A | G, N | GAPDH, HPRT | 66 |
Felis catus, cat | B2M, GAPDH, GUSB, HMBS, HPRT, RPL17, RPL30, RPS19, RPS5, YWHAZ | G | RPL17, HMBS | 67 |
Canis lupus familiaris, dog | B2M, Beta-Actin, GAPDH, HMBS, HPRT, RPL13A, RPL32, RPS18, SDHA, TBP, YWHAZ | G | B2M, Beta-Actin, GAPDH | 68 |
Canis lupus familiaris, dog | B2M, GAPDH, GUSB, hnRNPH, HPRT, RPL8, RPS19, RPS5 | G | RPS5, HPRT, B2M | 69 |

Table 3. Papers reporting on the evaluation of expression stability of potential reference genes in mammalian non-human liver samples. Abbreviations in the software column: G=GeNorm, N=NormFinder.

of reference genes minimally required. Combining tumourous and non-tumourous tissues revealed that at least four reference genes were needed. The paper by Congiu et al. clearly showed that a different set of reference genes were most stably expressed if the groups were arranged according to the levels of inflammation, or the levels of steatosis or fibrosis. Unfortunately, it was not indicated by pair-wise variation which number of reference genes was optimal for each specific condition. The situation is similarly disturbing once the expression stability is evaluated in liver samples from other mammalian species like mice, rats, pigs, cats, dogs and cattle (Table 3). Again, a large list of potentially stably-expressed reference genes evaluated for their respective expression stability, including the favourable, but not necessarily the most stably expressed, human reference genes beta-actin, GAPDH and HPRT.

DISCUSSION

For relative expression levels of gene products, normalisation is needed. The expression of reference genes, of which the expression is to be stable amongst different conditions, is then used to standardise. The stability of their expression is tacitly presumed to be high. Analysis of the expression stability, by the inclusion of several independent reference genes, showed that this assumption does not always hold true. The few calculations on the minimal number of reference genes needed to properly normalise relative mRNA expression levels showed that, depending on the experimental comparison, at least two and sometimes more reference genes are needed. The plethora of various reference genes and the variable outcome in the papers evaluating reference gene expression stability, made one point clear: there are no standardised descriptions incorporated in the papers, nor are relevant details for data comparison, experimental repetition or data combination provided in most liver-related expression studies. Is this a purely academic fine-tuning issue? This is a rhetorical question. What are the cost-benefits for the inclusions of more reference genes? Imagine a simple *in vivo* experiment, two groups of six mice, six weeks of age, one group treated with a fibrotic agent and the other group as control. After six weeks (cost of animal housing around $500, 42 days 12 mice $1 per day per mouse), histology, slicing of slides, HE staining and one specific staining with an antibody (altogether costing $350). Molecular assays including one reference gene and three genes of interest ($200, qPCR for one gene around $50). So in total this imaginative experiment does cost around $1000, not taking into account the working hours. Histology and immunohistochemistry, once proper negative and positive controls are included, will be clear and open to comparisons and replications. Expression data can be replicated, however, they might not be comparable with other studies which use another reference gene to normalise expression. Even worse, the relative expression is potentially miscalculated, since it is unknown whether the reference gene was indeed expressed at a stable level throughout the two experimental conditions. For as little as $100 (two additional reference genes) the expression
data will be much more reliable, and since reference gene expression stability was evaluated and recorded a comparison of these expression data with other reports becomes feasible. The investment of just $100 will save a multitude of this amount once one can avoid a repetition of the experiment due to a lack of proper information on the stability of the included reference genes. BRISQ-guided standardisation for histological research and biobanking is obligatory in leading pathological journals at present. Liver research can make great progress if an improved standardisation can be accomplished for molecular investigations. The proposed MQIE guidelines and MQIE-precise guidelines, including proper reference gene expression stability evaluation, offer an easy way to make the presented data easy to repeat, allow data comparison, and facilitate manuscript reviewing.12

ABBREVIATIONS

Alb, albumin
BDL, bile duct ligation
B2M, beta-2-microglobulin
CycC, cyclophilin C
GAPDH, glyceraldehyde-3 phosphate dehydrogenase
GUSB, beta-Glucoronidase
HBC, hepatitis B virus
HCC, hepatocellular carcinoma
HCV, hepatitis C virus
HEV, hepatitis E virus
HIV, human immunodeficiency virus
HMBS, hydroxymethyl-bilane synthase
HPRT, hypoxanthine phosphoribosyl-transerase
HTPAP, PPAP2 domain-containing protein 1B
LPS, lipopolysaccaride
NAFLD, nonalcoholic fatty liver disease
NASH, nonalcoholic steatohepatitis
PHx, partial hepatectomy
PMM1, Phosphomannomutase 1
POLR2, polymerase (RNA) II polypeptide L
RPL0, Ribosomal Protein Large0
RPL17, Ribosomal Protein Large17
RPL31A, Ribosomal Protein Large13A
RPL41, Ribosomal Protein Large41
RPSS5, Ribosomal Protein Small SDHA, succinate dehydrogenase complex, subunit A
SFRS4, splicing factor serine/arginine-rich 4
SOD1, Super Oxide Dismutase-1
TBPA, TATA Box Binding Protein
TFRC, transferrin receptor
TuBP, tubulin alpha 4a
UBC, Ubiquitin C
YWHAZ, tyrosine 3-monooxygenase/tryptophan 5-monooxygenase activation protein, zeta polypeptide

REFERENCES

5. Micke P, Ohshima M, Tahmasebpoor S, et al. Biobanking of fresh frozen specimens for gene expression stability evaluation, offer an easy way to make the presented data easy to repeat, allow data comparison, and facilitate manuscript reviewing.

Integrin alphavbeta6 is a marker of the progression of biliary and portal liver fibrogenesis. J Hepatol. 2010;52:96-105.

Robust protection against recurrent episodes of hepatic encephalopathy

Significant reductions in episodes of hepatic encephalopathy and hospitalisation rates have been demonstrated with XIFAXAN® 550 b.d. and concomitant lactulose. XIFAXAN® 550 b.d. provides a cost-effective treatment option that enhances quality of life for patients.

INTERNATIONAL ABBREVIATED PRESCRIBING INFORMATION: XIFAXAN® / TARGAXAN® 550 mg (rifaximin)

Presentation: Blister pack containing 14 film-coated, pink tablets of 550 mg rifaximin for oral administration.

Indications: Reduction in recurrence of episodes of overt hepatic encephalopathy in patients ≥ 18 years of age.

Dosage and administration: Recommended dose: 550 mg twice a day orally with a glass of water, with or without food. No specific dosing adjustment is necessary for patients with hepatic insufficiency or for the elderly.

Contraindications: Hypersensitivity to rifaximin, any rifamycin antibiotic agents or any of the excipients.

Warnings and precautions:

The safety and effectiveness of XIFAXAN® for the prevention of recurrence of hepatic encephalopathy have not been established in patients under 18 years of age.

Drug interactions:

- Co-administration of rifaximin with other rifamycins is not recommended.
- Caution should be exercised when administering XIFAXAN® by patients with severe hepatic impairment (Child-Pugh C) and in patients with MELD (Model for End-Stage Liver Disease) score >25.
- The potential association of rifaximin treatment with CDAD and -associated diarrhoea (CDAD) has been reported with use of nearly all antibacterial agents, including rifaximin.
- In patients with normal bacterial flora, rifaximin in dosages up to 2,400 mg/day for 7 days did not result in any relevant clinical symptoms related to the high dosage. In case of accidental overdosage, symptomatic treatments and supportive care are suggested.

Adverse events:

The adverse effects identified from the pivotal clinical trial most likely to be associated with rifaximin treatment (incidence ≥1%) are: nausea, dizziness, asthenia, headache, vomiting, abdominal pain, upper abdominal distension, diarrhoea, nausea, vomiting, ascites, rash, pruritus, muscle spasms, arthralgia.

Precautions:

- Patients with impaired renal function. Concomitant administration of rifaximin with other rifamycins is not recommended.
- In patients with impaired renal function, concomitant administration of rifaximin with other rifamycins is not recommended.
- Caution should be exercised when administering XIFAXAN® to patients with severe hepatic impairment (Child-Pugh C) and in patients with MELD (Model for End-Stage Liver Disease) score >25.
- The potential association of rifaximin treatment with CDAD and -associated diarrhoea (CDAD) has been reported with use of nearly all antibacterial agents, including rifaximin.
- In patients with normal bacterial flora, rifaximin in dosages up to 2,400 mg/day for 7 days did not result in any relevant clinical symptoms related to the high dosage. In case of accidental overdosage, symptomatic treatments and supportive care are suggested.

Pregnancy and lactation:

- Rifaximin and rifaximin metabolites are excreted in human milk. A risk to the infant cannot be excluded.
- Caution is advised in patients who are or plan to become pregnant. Use of rifaximin during pregnancy is not recommended.

Legal category: POM.

Trade names: XIFAXAN®, TARGAXAN®.

ATC code: A07AA11.

Duration of treatment:

- The duration of treatment depends on the clinical condition of the patient and the patient’s response to the treatment.

NEW

Xifaxan®

Rifaximin

NORGINE

550

Targaxan®

550

XIFAXAN® has varying availability and licensing internationally. Before prescribing, consult your country approved prescribing information, available from your local distributor or Norgine Ltd.

Adverse events should be reported to your regulatory agency. Adverse events should also be reported to your local distributor or Norgine Limited, Norgine House, Moorhall Road, Harefield, Uxbridge, Middlesex UB8 6NS, United Kingdom.

Email: globalmedinfo@norgine.com

Date of preparation: March 2013.